
52

Pot: Deterministic transactional execution

TIAGO M. VALE and JOÃO A. SILVA, NOVA LINCS, DI, FCT, Universidade NOVA de Lisboa
RICARDO J. DIAS, SUSE Linux GmbH and NOVA LINCS
JOÃO M. LOURENÇO, NOVA LINCS, DI, FCT, Universidade NOVA de Lisboa

This paper presents Pot, a system that leverages the concept of preordered transactions to achieve de-
terministic multithreaded execution of programs that use Transactional Memory. Preordered transactions
eliminate the root cause of nondeterminism in transactional execution: they provide the illusion of executing
in a deterministic serial order, unlike traditional transactions which appear to execute in a nondeterministic
order that can change from execution to execution. Pot uses a new concurrency control protocol that exploits
the serialization order to distinguish between fast and speculative transaction execution modes in order
to mitigate the overhead of imposing a deterministic order. We build two Pot prototypes: one using STM
and another using off-the-shelf HTM. To the best of our knowledge, Pot enables deterministic execution of
programs using off-the-shelf HTM for the first time. An experimental evaluation shows that Pot achieves de-
terministic execution of TM programs with low overhead, sometimes even outperforming nondeterministic
executions, and clearly outperforming the state of the art.

ACM Reference Format:
Tiago M. Vale, João A. Silva, Ricardo J. Dias, and João M. Lourenço. Pot: Deterministic transactional execu-
tion. ACM Trans. Architec. Code Optim. 13, 4, Article 52 (December 2016), 25 pages.
DOI: 10.1145/3017993

1. INTRODUCTION
Over the last decade, Transactional Memory (TM) [Herlihy and Moss 1993; Shavit
and Touitou 1997] emerged as a viable mechanism to synchronize concurrent accesses
to shared state due to an interesting trade-off between ease of use and performance.
With TM, programmers specify which portions of code should be atomic (transactions)
without worrying how to enforce such atomicity. A concurrency control protocol (im-
plemented either in software (STM), hardware (HTM), or a mixture of both) enforces
atomicity at runtime, providing the illusion that transactions execute one at a time.
TM is becoming mainstream, as processors from Intel and IBM already provide sup-
port for HTM [Cain et al. 2013; Yoo et al. 2013], the GCC has experimental support
for TM (using either STM or HTM) [Free Software Foundation 2014], and there is
ongoing work in integrating TM language constructs in C/C++ [C++ Committee SG5
2015].

Although TM provides a simple programming model it inherits the nondeterministic
behavior of multithreaded execution. Specifically, the order in which transactions ap-
pear to execute depends on the nondeterministic interleavings of threads at runtime,
so different executions of the same program with the same inputs can yield different

New Paper, Not an Extension of a Conference Paper.
This work is supported by Fundação para a Ciência e Tecnologia, Ministério da Ciência, Tecnologia, e Ensino
Superior, under grants SFRH/BD/84497/2012 and PEst/UID/CEC/04516/2013.
Authors’ addresses: T. Vale, J. Silva, R. Dias, and J. Lourenço, Departamento de Informática, FCT/UNL,
Quinta da Torre, 2829-516 Caparica, Portugal.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or repub-
lish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
c© 2016 ACM. 1544-3566/2016/12-ART52 $15.00
DOI: 10.1145/3017993

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 4, Article 52, Publication date: December 2016.

52:2 T. M. Vale et al.

thread 1
if test it then

assume it

thread 2

change it

(a) Atomicity violation.

thread 1

initialize it

thread 2
use it

(b) Order violation.

Fig. 1: Example of the most common concurrency bugs [Lu et al. 2008], with trans-
actions in italic. In (a) the assumption of a predicate is not atomic with its test.
In (b) thread 2 uses a resource before thread 1 initializes it.

outcomes. In this work we focus on building a TM system that ensures that data race-
free programs execute according to a deterministic transaction serialization order.1

Having a system that ensures a deterministic transaction serialization order has
at least two benefits: (1) we can execute multiple replicas of a multithreaded appli-
cation for fault tolerance [Schneider 1990], and (2) it helps debugging, or prevents,
the most common concurrency bugs [Lu et al. 2008]. Executing multiple replicas for
fault tolerance relies on the assumption that correct replicas always yield the same
outputs. With a deterministic transaction serialization order this assumption is not
broken under multithreaded execution, so replicas do not need to fall back to sequen-
tial execution to ensure correctness. Consequently, replicas potentially make better
use of the available resources such as multicore processors. Regarding concurrency
bugs, Fig. 1 depicts the two most common concurrency bugs (amounting to 97% of the
non-deadlock bugs) found in a study of 4 real-world applications [Lu et al. 2008], with
transactions highlighted in italic. Fig. 1a shows an example of an atomicity violation.
Thread 1 tests some predicate, and then executes code that assumes that it is true.
Thread 2 executes code that changes the predicate’s outcome. If thread 2 interleaves
thread 1 after the predicate test, but before the “then branch,” thread 1 will execute
code that assumes the predicate is true while it is not, which can result in unexpected
behavior. Fig. 1b shows an example of an order violation. Thread 1 initializes some re-
source that thread 2 uses, but at runtime thread 2 attempts to use the resource before
thread 1 initializes it. These concurrency errors are sensitive to thread interleavings,
and in the particular case of TM, only manifest themselves in particular transaction
serialization orders. Since the transaction serialization order is nondeterministic, the
errors are difficult to reproduce and debug. With a deterministic transaction serializa-
tion order, the aforementioned errors either manifest themselves in every execution,
or not at all, greatly simplifying the developer’s work.

In this paper we present Pot, a system that enables deterministic multithreading of
TM-based applications. While existing work [Ravichandran et al. 2014] also ensures
a deterministic transaction serialization order of TM-based applications, Pot: (1) per-
forms better, which is important when executing multiple replicas for fault tolerance,
(2) is equally helpful when dealing with the most common concurrency bugs such as
atomicity and order violations, and (3) is applicable to both STM and HTM.

In principle, lock-based deterministic multithreading techniques [Bergan et al. 2010;
Liu et al. 2011; Olszewski et al. 2009; Lu et al. 2014; Cui et al. 2013] could be used to
achieve deterministic execution of STM programs (if, and only if, the STM concurrency
control protocol is implemented using deterministic locks). However, such an approach
has several drawbacks: (a) it cannot be applied to HTM, because the concurrency con-
trol is implemented in the hardware, (b) it fails to exploit the semantics of transactions
to reduce the overhead of ensuring determinism, because determinism is enforced with
locks, which are at a level of abstraction lower than transactions, and (c) many practi-

1This property is known as weak determinism [Olszewski et al. 2009].

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 4, Article 52, Publication date: December 2016.

Pot: Deterministic transactional execution 52:3

cal STMs directly use atomic primitives such as compare-and-swap rather than locks.
Instead, Pot uses the concept of preordered transactions as a principled approach to
ensure a deterministic transaction serialization order. While traditional transactions
provide the illusion of executing one at a time in any order, preordered transactions
appear to execute in a specific, predefined, order.

To realize preordered transactions, Pot must address two key challenges: (1) guar-
antee that the predefined serial order is the same across executions, and (2) that the
outcome of executing transactions is as if they executed serially in the predefined or-
der. To ensure (1), Pot’s sequencer assigns a sequence number to each new transaction.
The sequence number reflects the transaction’s place in a deterministic transaction se-
rialization order. To ensure (2) efficiently, Pot executes transactions concurrently and
relies on a new concurrency control protocol that guarantees that the outcome is equiv-
alent to the order defined by the sequencer. Pot’s concurrency control protocol relies on
two key techniques: ordered commits and transaction modes. Ordered commits force
transactions to commit according to the predefined serialization order. Transaction
modes leverage the key insight that, at any given time, there is always one transaction
that is “the next allowed to commit.” Pot’s concurrency control protocol executes that
particular transaction as fast as possible, with virtually no concurrency control over-
head (fast mode) while executing the other transactions using regular mechanisms to
maintain correctness in the presence of the fast-mode transaction (speculative mode).

We built two Pot prototypes, one using STM and another using off-the-shelf HTM,
and evaluate them with the popular STAMP benchmark suite [Minh et al. 2008] and
STMBench7 [Guerraoui et al. 2007]. Our Pot STM implementation clearly outperforms
the state of the art in STM-based deterministic execution while simultaneously achiev-
ing deterministic execution with low overhead, providing promising evidence that us-
ing both STM and determinism to ease multithreaded programming may be practical.
To the best of our knowledge, Pot also advances the state of the art by enabling de-
terministic execution of off-the-shelf HTM-based multithreaded programs for the first
time.

The rest of the paper is structured as follows. §2 presents Pot’s design, namely its
sequencer (§2.1) and concurrency control protocol (§2.2); §3 highlights the challenges
and details our implementation of Pot in an STM and an off-the-shelf HTM system; §4
reports an experimental evaluation of Pot; we discuss the related work and conclude
the paper in §5 and §6.

2. DESIGN
The standard Transactional Memory (TM) correctness criterion is opacity [Guer-
raoui and Kapalka 2008]. Traditional concurrency control protocols used to imple-
ment opaque transactions, such as Two-phase Locking [Bernstein et al. 1987] or Op-
timistic Concurrency Control [Kung and Robinson 1981], embrace opacity’s flexibility
and perform two tasks simultaneously while transactions are executing: (a) they com-
pute the transaction serialization order (ordering), and (b) control the concurrent ex-
ecution of transactions to respect that serialization order (concurrency control). Since
ordering is intertwined with concurrency control, the final transaction serialization
order depends on the nondeterministic interleavings that occur at runtime between
transactions and thus varies from one execution to the next. We refer to this execution
model as traditional transactions.

With preordered transactions the serialization order is independent of the inter-
leavings that may occur between transactions because, unlike traditional transac-
tions, preordered transactions already have a place in the serialization order before
they are executed. Conceptually, preordered transactions have a two-phase execution
model: (1) the ordering phase which defines every transactions’ place in the serializa-

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 4, Article 52, Publication date: December 2016.

52:4 T. M. Vale et al.

tion order, and (2) the execution phase where transactions execute concurrently in such
a way that the outcome is equivalent to their sequential execution in the predefined
order. Traditional concurrency control protocols cannot be used in the execution phase,
because they implement both ordering and concurrency control. This paper proposes a
novel concurrency control protocol that can be used in the execution phase (§2.2).

2.1. Ordering phase: Pot sequencer
A consequence of decoupling ordering and concurrency control is that both the ordering
and execution phase, where concurrency control occurs, can be performed separately
by two different components. Ordering is performed by a sequencer component that
computes some total order over the set of all transactions.

At first glance it seems that the sequencer needs to know which transactions will
execute ahead of time, but we can devise generic sequencers that compute the trans-
action order on-the-fly by defining an order over the application threads and deriv-
ing the transaction order from it. For example, take threads t and u, with transac-
tions (a; b; c) and (d; e; f) in their code, respectively. Consider a sequencer that orders
threads using a round-robin scheme, i.e. (t;u). This sequencer defines the transaction
order (a; d; b; e; c; f). Now consider that thread t only executes transaction c depend-
ing on some condition. The condition may be defined over global state, thread-private
state, or a mixture of both. If the condition is over global state, the respective state
must have been read within a transaction, e.g. transaction b, so the condition is always
tested over the state resulting from the order (a; d; b), yielding a deterministic result.2
If thread t decides not to execute transaction c the order is (a; d; b; e; f). If thread t’s
logic is “execute c or g” instead, the order is (a; d; b; e; g; f).

The only requirement of a generic sequencer that derives the transaction order from
the thread order is that the events of starting and stopping threads must be processed
deterministically by the sequencer with respect to the transaction order. To do so, since
transactions appear to execute in a deterministic order, Pot treats thread start/stop
events as if they are transactions. Take threads t and u, with transactions (a; b; c)
and (d; e; f), respectively, where transaction b is the creation of a new thread v with
transactions (g;h). If we organize threads in a tree where the main thread is the
root, the remaining threads are children of the thread that spawned them, and let the
tree’s post-order traversal specify the thread order, a round-robin sequencer defines
the transaction order (a; d; b; e; g; c; f ;h).

It is also possible to use application-specific sequencers. For example, we may record
the transaction commit order in a nondeterministic execution and then feed it to a
sequencer to replay the recorded execution. We can also have sequencers that explicitly
define a transaction order, e.g. (a; b; c; d; e; f), but these need to take care because if a
thread decides not to execute a transaction in the order then the program would hang
waiting for it to execute. (We can detect this situation and abort the application with
an error.)

Our design works best for workloads in which threads perform transactions regu-
larly. Optimizing for workloads with very heterogeneous thread behaviors is an open
problem left for future work.

2.2. Execution phase: Pot Concurrency Control
Transactions may execute once they go through the ordering phase. At the core of the
execution phase is a concurrency control protocol that guarantees equivalence to the
serialization order defined in the ordering phase. The straightforward way to imple-

2Assuming the only source of nondeterminism is the transaction serialization order. Techniques
to deal with other sources, e.g. randomness, are complementary to this work.

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 4, Article 52, Publication date: December 2016.

Pot: Deterministic transactional execution 52:5

1: when txn_start(t)
2:
3: when txn_write(t, o, v)
4: deferred_update(o, v,Wt)
5: when txn_read(t, o)
6:

consistent_read(o,Rt,Wt)
or abort

7: when txn_commit(t)
8: atomically
9: if validate(Rt)

10: writeback(Wt)
11: else
12: abort

(a) OCC.

1: when txn_start(t, sn)
2: snt ← sn

3: when txn_write(t, o, v)
4: deferred_update(o, v,Wt)
5: when txn_read(t, o)
6: consistent_read(o,Rt,Wt) or

abort
7: when txn_commit(t)
8: wait until snc = pred(snt)
9: if validate(Rt)

10: writeback(Wt)
11: snc ← snt

12: else
13: abort

(b) Speculative PCC.

1: when snc = pred(snt)
2: if validate(Rt)
3: writeback(Wt)
4: else
5: abort
6: when txn_write(t, o, v)
7: direct_update(o, v)
8: when txn_read(t, o)
9: read(o)

10: when txn_commit(t)
11: snc ← snt

(c) Fast PCC.

Fig. 2: Methodology to transform Optimistic Concurrency Control (OCC) into Pot Con-
currency Control (PCC). Fig. 2a models a typical OCC transaction. Figs. 2b and 2c
model a PCC transaction in speculative and fast mode, respectively. snc represents
the sequence number of the last committed transaction. snt, Rt and Wt represent the
sequence number, read set, and write set of transaction t, respectively.

ment such concurrency control protocol is to simply execute transactions sequentially.
However this approach is clearly suboptimal as it does not take advantage of the in-
herent parallelism present in today’s multicore architectures.

This section describes Pot Concurrency Control (PCC), a new protocol that executes
transactions concurrently while guaranteeing equivalence to the serial order defined
by the sequencer. We design PCC by modifying Optimistic Concurrency Control (OCC),
which works as follows. An OCC transaction consists of one, or more, speculative exe-
cutions. A speculative execution is divided into three phases: (1) the read phase, (2) the
validation phase, and (3) the write phase. The read phase records the objects read
by the transaction in the transaction’s read set. Write operations do not modify the
shared state; instead the transaction defers its updates and logs them in its write set.
Therefore locations that are both read and modified occur in both the read and the
write sets. After the read phase, the transaction undergoes a validation phase where
it checks whether any concurrently committed transaction’s updates overlap with its
read set. If so the transaction is aborted to respect opacity, and can be retried; oth-
erwise it proceeds to the next phase. Finally, the transaction enters the write phase
where it atomically updates all objects in its write set with the values buffered during
the read phase.

We have chosen OCC as the base for PCC because OCC is suitable for dynamic
transactions, i.e. transactions for which it is very difficult (or even impossible) to iden-
tify their read/write sets in advance. Dynamic transactions are common in general-
purpose TM-based programs due to aliasing and the unstructured nature of the heap.
In fact, most STM and all existing HTM concurrency control protocols are optimistic.

Next, we present PCC incrementally. First, we describe the baseline OCC protocol
in §2.2.1, and then present our methodology to transform the baseline OCC protocol
into PCC by applying two key techniques: ordered commits, in §2.2.2, and transaction
modes, in §2.2.3.

2.2.1. Baseline protocol. Consider the protocol depicted in Fig. 2a, modeling a typi-
cal OCC scheme [Dice et al. 2006; Kung and Robinson 1981]. The read phase oc-
curs after txn_start and before either txn_commit or txn_abort, and consists of invo-

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 4, Article 52, Publication date: December 2016.

52:6 T. M. Vale et al.

cations to txn_read and/or txn_write. Both the validation and write phase occur dur-
ing txn_commit.
Read phase. Write operations intending to update object o’s value to v, buffer the
update in Wt (Fig. 2a, line 4). Read operations on an object o log the access in the
transaction’s read set Rt and return (a) the buffered value for o in the write set Wt,
if existing, or (b) read a value of o from the shared state consistent with the rest
of the read set (line 6). If it is not possible to read a consistent value the transac-
tion aborts. For example, take two objects x and y, both initially 0. Transaction t ob-
serves x = 0. Meanwhile, another transaction commits and sets both x and y to 1.
If transaction t attempts to read y it can either return 0 or abort, but it must never
return 1, because x = 0 and y = 1 is not possible under opacity.
Validation phase. The validation phase iterates the read set and checks that the ob-
served values are still coherent, i.e., all the observed values remain the same (line 9).
Write phase. If validation is successful then transaction t enters its write phase and
directly updates the objects in its write set with the values buffered during the
read phase, creating a new version of the shared state (line 10).
Correctness. This protocol guarantees opacity mainly due to the atomicity of the val-
idation and write phases (lines 8–12). If the validation phase is successful then none
of the read objects have been modified since the transaction’s read phase. This means
that the read phase happens in the same logical instant of the validation phase. Since
the validation and write phase occur atomically, the write phase also happens in the
same logical instant of the read phase. Therefore, transaction t appears to have been
the sole transaction executing. Hence t is serialized after all the transactions that
wrote the values t observed, and before any transactions that eventually observe the
values t wrote.

2.2.2. Ordered commits. The OCC protocol described in the previous section provides
the illusion that transactions execute one at a time. However, the order in which trans-
actions appear to execute is not deterministic because it depends on the interleavings
between transactions’ operations that will occur at runtime.

To adhere to the serial order predefined in the ordering phase, we make two key
observations: (a) OCC transactions only modify shared state during their write phase,
and (b) each transactions’ place in the serialization order depends on the relative or-
der in which each transaction (atomically) performs its validation and write phase. If
we restrict transactions to execute their validation and write phases in the order de-
fined by the sequencer, we guarantee that the outcome is equivalent to the respective
ordered sequential execution.

To transform the OCC protocol described in the previous section into PCC, we start
by updating the txn_start operation to have an additional parameter, a sequence num-
ber sn, that reflects the order of transaction t in the serialization order defined by
the sequencer (Fig. 2b, line 1). Transaction t is preordered after the transaction with
sequence number predecessor(snt) and before the transaction with sequence number
successor(snt). We force transactions to commit according to the predefined order by
inserting a conditional wait in txn_commit. When transaction t wants to commit, it
waits until the transaction with sequence number predecessor(snt) commits (line 8).
To this end, transactions communicate via a snc object whose value is the sequence
number of the last committed transaction (line 11).
Correctness. In the original OCC protocol correctness is guaranteed by atomically exe-
cuting both the validation and write phase. However, the order in which active trans-
actions execute those phases depends on their nondeterministic multithreaded execu-
tion. To conform with the predefined order the atomic block is replaced with a con-
ditional wait that restricts the order in which transactions are allowed to commit.

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 4, Article 52, Publication date: December 2016.

Pot: Deterministic transactional execution 52:7

Specifically, a transaction t that finishes its read phase is only allowed to perform the
validation and write phases after the transaction that directly precedes t in the serial
order has completed. Since transactions are totally ordered, only one transaction at a
time can escape the conditional waiting on line 8. Correctness is maintained because
the conditional wait also guarantees atomicity. The atomicity scope is between the wait
condition (line 8) and updating snc (line 11).

2.2.3. Transaction modes. OCC employs a set of techniques to guarantee correctness,
such as read and write sets, read set validation and deferred updates. With OCC all
transactions are executed using the aforementioned techniques because any transac-
tion may become the next transaction in the serialization order, which is being defined
as transactions execute. Using such techniques imposes additional overhead when
compared with an execution without any concurrency control.

However, unlike in OCC, in PCC the serialization order is predefined. Since PCC
restricts the order in which transactions commit, they may now have to wait for their
turn to commit, leading to a loss of parallelism. To mitigate this loss of parallelism,
we make the key observation that at any moment there is always a single transaction,
which we refer to as fast, which is the next transaction that is allowed to commit. We
exploit the fact that the fast transaction is the next transaction allowed to commit to
execute it without most concurrency control overheads. Hence, we distinguish between
two types of transactions: fast and speculative. We describe both fast and speculative
modes below.
Fast transaction. A fast transaction t is the only active transaction whose predeces-
sors are all completed. A fast transaction is the next, and only, transaction allowed
to commit. It can be executed more efficiently by merging the read and write phases
and completely removing the validation phase, thus eschewing most of the traditional
OCC techniques and associated overhead. Fast transactions execute according to the
protocol in Fig. 2c.
Read phase. Write operations no longer perform deferred updates; instead they use
direct updates (line 7). Since updates are installed in place during the now combined
read-write phase, read operations are reduced to simply reading the current object’s
value with no additional consistency checks or read set tracking (line 9).
Validation phase. Fast transactions are guaranteed to execute to completion without
interference from other active transactions, thus the validation phase is unnecessary.
(Transactions that switch on the fly to fast mode need to validate the speculative exe-
cution done up to that point; we elaborate below.)
Write phase. The write phase is implicitly executed during the read phase due to the
direct update strategy, therefore the “write back” step is also completely eliminated.
Correctness. Our argument for correctness is the same as for the ordered commits
technique. However a fast transaction does not speculatively perform the read phase
and wait for its turn to transition to the validation and write phases. Instead the fast
transaction executes the now combined read-write phase when it is already its turn to
commit. A fast transaction is effectively given exclusive write permission to the shared
state until it commits, so merging the read and write phases by replacing deferred with
direct updates, and removing the validation phase, does not affect correctness.
Speculative transaction. A transaction whose turn to commit has not yet come is a
speculative transaction, and it follows the ordered commit protocol (§2.2.2).
Live promotion. Since fast transactions bypass most concurrency control overhead, a
live speculative transaction t, i.e. still executing its read phase, immediately switches
to fast mode as soon as snc = predecessor(snt) holds (line 1). Upon a live promo-
tion, transaction t eagerly validates the portion of the read phase it has executed
so far (line 2). If the validation is successful then t applies any pending writes to

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 4, Article 52, Publication date: December 2016.

52:8 T. M. Vale et al.

the shared state, without updating snc, and executes its remaining operations in fast
mode (line 3). Otherwise t aborts and retries in fast mode (line 5).
Explicit aborts. If the transaction API has an explicit txn_abort operation to abort the
current transaction, fast transactions must keep the write set as an undo log, i.e. re-
member the values they overwrite to restore them upon abort. The txn_abort operation
may allow the developer to specify a “no retry” policy, i.e. abort the transaction without
retrying it afterwards. If so, these “no retry” aborts must comply with the predefined
order as they are equivalent to committing the current transaction as read only. This
is done by processing a “no retry” explicit abort as a commit. For example, a specula-
tive tansaction waits for its turn, validates its read set, and updates snc if validation
is sucessful, or retries if not. A fast transaction restores the write set (undo log) and
updates snc.
Multiple simultaneous fast transactions. Multiple fast transactions can safely ex-
ecute in parallel given additional knowledge about transactions. A string of successive
transactions that do not have read-write nor write-write conflicts between themselves
can all execute simultaneously as fast transactions, because the final outcome is inde-
pendent of the order in which they commit. To implement multiple simultaneous fast
transactions the runtime requires a compatibility matrix of all transactions. When a
transaction becomes fast it publishes its information: transaction identifier, sequence
number, and that it is active. Using this scheme, a transaction knows it can switch to
fast mode if: (1) its predecessor is already fast (active or finished), and (2) it is compat-
ible with all currently active fast transactions. If both conditions hold, the transaction
can switch to fast mode.

3. IMPLEMENTATION
We implemented a Pot prototype consisting of an implementation of a sequencer and
two concurrency control protocols: one where transactions execute using STM and
another where transactions execute using HTM. Our sequencer implementation is
generic and derives the transaction order from a round-robin thread order (§2.1). Next,
we describe our STM (§3.1) and HTM (§3.2) implementations.

3.1. Software Transactional Memory
The ordered commits technique ensures that only one transaction executes its commit
procedure at a time. In NOrec [Dalessandro et al. 2010] commits are also sequential.
While this similarity makes NOrec a potential baseline for Pot, NOrec eschews per-
memory location metadata and uses value-based validation instead. Consequently,
speculative transactions are unable to identify which particular memory location is
written when the fast transaction performs a write. As such, implementing fast trans-
actions while still preserving opacity would require that, every time a fast transaction
performs a write, all speculative transactions would have to validate their entire read
set, regardless of which specific memory location was written by the fast transaction.
Instead, our Pot STM protocol is based on TL2 [Dice et al. 2006], a popular STM that
uses per-memory location metadata, so that speculative transactions do not have to
perform incremental validation on reads.
Baseline STM transaction. In a nutshell, TL2 works as follows. There is a global
version and a table of versioned locks, i.e., a version and a lock bit implemented as
a single value—vlocks for short. Odd versions are locked and even versions are un-
locked. Each memory address is mapped to one vlock. When a transaction starts, it
samples the global version gv to rvt and performs an acquire fence (Fig. 3a, lines 2–
3). The transaction can safely read any value whose version is less than or equal to
its rvt sampling. The fence with acquire semantics ensures that this transaction ob-
serves all the memory writes performed by the transaction that updated gv’s value

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 4, Article 52, Publication date: December 2016.

Pot: Deterministic transactional execution 52:9

1: when txn_start(t)
2: rvt ← gv
3: acquire-fence
4: when txn_write(t, addr, val)
5: add (addr, val) to Wt

6: when txn_read(t, addr)
7: if addr ∈ Wt

8: return Wt(addr)
9: v1← get-vlock(addr)

10: acquire-fence
11: value← read(addr)
12: acquire-fence
13: v2← get-vlock(addr)
14: if unlocked(v1)∧ v1 ≤ rvt ∧ v1 = v2
15: add addr to Rt

16: return value
17: else abort
18: when txn_commit(t)
19: for each (addr,−) ∈ Wt

20: if try-lock(addr) fails
21: abort
22: wvt ← atomic-add-fetch(gv, 2)
23: for each addr ∈ Rt

24: v ← get-vlock(addr)
25: if locked-by-other(v) ∨ v > rvt

26: abort
27: for each (addr, val) ∈ Wt

28: write(addr, val)
29: release-fence
30: for each (addr, _) ∈ Wt

31: set-and-unlock(addr, wvt)

(a) Original TL2.

1: when txn_start(t)
2: rvt ← gv
3: acquire-fence
4: if first attempt
5: wvt ← get-seq-no(tid)
6: when txn_write(t, addr, val)
7: add (addr, val) to Wt

8: when txn_read(t, addr)
9: if addr ∈ Wt

10: return Wt(addr)
11: v1← get-version(addr)
12: acquire-fence
13: value← read(addr)
14: acquire-fence
15: v2← get-version(addr)
16: if v1 ≤ rvt ∧ v1 = v2
17: add addr to Rt

18: return value
19: else abort
20: when txn_commit(t)
21: wait until gv = wvt − 1
22: acquire-fence
23: for each addr ∈ Rt

24: v ← get-version(addr)
25: if v > rvt

26: abort
27: for each (addr, val) ∈ Wt

28: set-version(addr, wvt)
29: release-fence
30: write(addr, val)
31: release-fence
32: gv ← wvt

(b) Speculative PCC.

1: when gv = wvt − 1
2: acquire-fence
3: for each addr ∈ Rt

4: v ← get-version(addr)
5: if v > rvt

6: abort
7: for each (addr, val) ∈ Wt

8: set-version(addr, wvt)
9: release-fence

10: write(addr, val)
11: when txn_write(t, addr, val)
12: set-version(addr, wvt)
13: release-fence
14: write(addr, val)
15: when txn_read(t, addr)
16: return read(addr)
17: when txn_commit(t)
18: release-fence
19: gv ← wvt

(c) Fast PCC.

Fig. 3: Pot Concurrency Control (PCC) STM implementation.

to rvt. Write operations are buffered in the write set (line 5). Read operations return
the value of a buffered write if there is any (line 7–8). Otherwise, they perform a con-
sistent read by: (1) reading the address’ vlock to v1 (line 9), (2) performing an acquire
fence (line 10), (3) reading the memory address (line 11), (4) performing another ac-
quire fence (line 12), and (5) reading the vlock again to v2 (line 13). The first fence
ensures that the memory address value is at least as recent as v1. (If v1 is 42, then the
value read has version 42 or newer.) The second fence ensures that if the value is newer
than v1, then v2 is at least as recent as the value’s version. (If the value read has ver-
sion 43, v2 is 43 or newer.) If v1 is not locked, and v1 ≤ rvt, and v1 = v2, then the read
successfully returns a consistent value; otherwise, the transaction aborts (lines 14–17).

The commit operation locks every address in the write set by performing a compare-
and-swap on their vlocks. If any of the compare-and-swap operations fails, then the
transaction releases any acquired locks and aborts (lines 19–21). After successfully
acquiring the vlocks, the transaction performs an atomic add-and-fetch by 2 on gv and
stores gv’s new value in wvt (line 22). Then, the transaction validates its read set by
checking whether all memory addresses read are unlocked and their version is still
compatible with rvt. If any check fails then the transaction restores any acquired locks
and aborts (lines 23–26). Note that the atomic add-and-fetch operation ensures that:
(1) any other transaction that starts meanwhile and observes gv = wvt will at least
observe all the write set vlocks as acquired, and (2) if any transactions committed
since this transaction started, i.e. wvt > rvt + 2, and wrote to a memory address read
by this transaction, then the read set validation will observe vlocks as locked or with
a version newer than rvt.

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 4, Article 52, Publication date: December 2016.

52:10 T. M. Vale et al.

At this point the transaction successfully commits. It writes back any buffered
writes, performs a release fence, and unlocks the write set, setting every vlock
to wvt. The release fence ensures that if any transaction observes a vlock with ver-
sion wvt then it also observes the value written by the transaction.
Speculative STM transaction. To implement PCC, we leverage the fact that TL2
uses a global version and retrofit sequence numbers directly as versions. Thus, trans-
actions communicate the commit order via gv. A consequence of ordered commits is
that we no longer require locks, just versions, as they were only needed due to concur-
rent commits.

When a transaction starts for the first time, it requests its sequence number wvt from
the sequencer by supplying the thread’s identifier tid (Fig. 3b, lines 4–5). Read
operations are similar to TL2 except that we no longer test if the address is
locked (line 16). When the transaction attempts to commit, if necessary it waits un-
til gv = wvt − 1 (line 21). Once gv = wvt − 1, we perform an acquire fence that ensures
that the following read set validation observes the newest version of the addresses
read (line 23–26). In the write back step, we first update the address’ version, perform
a release fence, and then write the new value (lines 27–30). As discussed before, the
release fence ensures that if any transaction observes the written value, it also ob-
serves the new version number. Finally, the transaction updates gv, signaling the next
transaction that it is its turn to commit (line 32). The update of gv is preceded by a
release fence to ensure that all transactions that see the new value of gv will also see
the new values for the objects written in the write back.
Fast STM transaction. The fast mode write operation is equivalent to the write back
step of a speculative transaction, i.e. updates the version number, performs a re-
lease fence, and writes the new value (Fig. 3c, lines 12–14). The read operation is
reduced to a regular load from memory (line 16), and the commit operation simply
updates gv (line 19).
Live promotion. A speculative STM transaction t changes to fast on the fly when it
detects that it is its turn, i.e. gv = wvt − 1 (Fig. 3c, lines 1–10). In our implementation
we check whether the condition holds whenever the speculative transaction begins,
reads, or writes.

3.2. Hardware Transactional Memory
Implementing PCC in HTM poses unique challenges when compared with an STM
implementation. Existing HTMs use the cache to maintain the read and write set, and
rely on the cache coherence protocol to detect conflicts. HTMs are also best effort, i.e.,
hardware transactions are not guaranteed to eventually commit, even in the absence
of conflicts, be it because the transaction’s footprint exceeds the cache capacity, or due
to the execution of an illegal instruction, an interrupt, a page fault, etc. Therefore, we
must always provide a software fallback to guarantee progress. These characteristics
pose three challenges, namely: (a) how to ensure that transactions eventually progress,
(b) how to implement ordered commits without inducing false conflicts, and (c) how to
implement fast transactions.

In our prototype we ensure progress using the most common fallback that achieves
opacity: resorting to a global lock. Every time a transaction acquires the global lock,
all hardware transactions abort and only retry when the lock is released.

In HTM, the commit operation is implemented entirely in hardware. This poses
a challenge on how to implement ordered commits because we introduce conflicts if
transactions signal each other whose turn it is to commit using a shared variable.
For example, imagine two non-conflicting transactions t1 and t2, serialized in that
order. Transaction t2 attempts to commit before t1. It reads the commit-order vari-
able, snc, and observes that it is still not its turn so it waits, e.g., because t2 can only

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 4, Article 52, Publication date: December 2016.

Pot: Deterministic transactional execution 52:11

1: when txn_start(t)
2: if first attempt
3: patht ← HW
4: triest ← 10
5: wait while locked(gl)
6: tbegin
7: if locked(gl)
8: abort
9: execute app. code

10: when txn_abort(t)
11: if persistent
12: triest ← 0
13: else
14: triest ← triest − 1
15: if triest = 0
16: lock(gl)
17: patht ← SW
18: execute app. code
19: when txn_commit(t)
20: if patht = HW
21: tcommit
22: else
23: unlock(gl)

(a) Standard HTM.

1: when txn_start(t)
2: if first attempt
3: patht ← HW
4: triest ← 10
5: snt ← get-seq-no(tid)
6: wait while locked(gl)
7: if snc = snt

8: tbegin(ROT)
9: switch to fast mode

10: else
11: sn← snc

12: tbegin
13: if locked(gl)
14: abort
15: execute app. code
16: when txn_abort(t)
17: if persistent
18: wait until snc = snt − 1
19: else
20: wait until snc > sn

21: when txn_commit(t)
22: tsuspend
23: wait until snc = snt

24: tresume
25: tcommit
26: snc ← snt

(b) Speculative PCC.

1: when txn_start(t)
2: tbegin(ROT)
3: execute app. code
4: when txn_abort(t)
5: if persistent
6: triest ← 0
7: else
8: triest ← triest − 1
9: if triest = 0

10: lock(gl)
11: patht ← SW
12: execute app. code
13: when txn_commit(t)
14: if patht = HW
15: tcommit
16: else
17: unlock(gl)
18: snc ← snt

(c) Fast PCC.

Fig. 4: Pot Concurrency Control (PCC) HTM implementation.

commit when snc = 1. When transaction t1 commits it sets snc = 1, triggering a con-
flict in t2 because it observed a (now) stale value. Implementing fast transactions is
also challenging because all concurrency control is performed by the hardware.

To implement our prototype we looked at the existing HTMs from Intel [Yoo et al.
2013] and IBM [Cain et al. 2013]. To implement ordered commits without induc-
ing false aborts we require the possibility to perform non-transactional accesses, i.e.
that do not trigger transactional conflicts. Unfortunately, Intel provides no support
for non-transactional accesses. However, IBM’s HTM has two instructions, tsuspend
and tresume, that allow the possibility to suspend, and resume, transactional execu-
tion inside a hardware transaction. (While in suspended mode accesses are performed
non-transactionally.)

IBM’s HTM also provides a special kind of transaction called Rollback-only Trans-
action (ROT). According to IBM, ROTs are intended to be used for single thread algo-
rithmic speculation [Cain et al. 2013]. For this reason, ROTs also buffer transactional
writes in the cache but do not maintain a read set. Furthermore, ROTs do not observe
buffered transactional writes from other transactions and all writes performed by a
ROT become visible to other transactions atomically, making them a prime choice to
implement fast transactions. However, note that ROTs may nevertheless abort due to
write-write conflicts with other concurrent transactions. For these reasons we imple-
mented our prototype on IBM’s HTM. It is still possible to implement Pot with Intel’s
HTM, albeit with ordered commits inducing false aborts and fast transactions being
regular transactions.
Baseline HTM transaction. The relevant IBM’s HTM instructions are tbegin
and tcommit, to start and commit a hardware transaction, respectively. We initialize
two important variables, patht and triest, when the application starts a transaction,

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 4, Article 52, Publication date: December 2016.

52:12 T. M. Vale et al.

by invoking our usual txn_start operation. patht is either HW or SW depending on
whether the transaction will execute as a hardware transaction or by software using
the global lock fallback. triest holds the number of remaining attempts to execute the
transaction in hardware until we fallback to software (Fig. 4a, lines 2–4). (We retry 10
times like in GCC’s experimental implementation.) If there is an ongoing transaction
executing in software, we wait until the global lock is free, otherwise the hardware
transaction may observe an inconsistent state and violate opacity (line 5). After the
lock is free we start a hardware transaction by issuing the tbegin instruction (line 6).
From this point on, every memory access is performed transactionally. Finally, we sub-
scribe the global lock by checking if it is locked before proceeding with the actual
application code (lines 7–8). By checking if the lock is taken it becomes part of the
transaction’s read set, so if any transaction falls back to software, any active hardware
transaction is immediately aborted.

Committing a transaction depends on whether it executed in hardware (patht = HW)
or software (SW). We commit a hardware transaction using the tcommit instruction,
whereas for a software transaction we simply release the global lock (lines 20–23).
Note that the tcommit operation may still trigger an abort if the transaction fails to
commit.

When a hardware transaction aborts, the control flow jumps to the txn_abort han-
dler. First, we check whether the abort is expected to be persistent by inspecting the
IBM’s TEXASR register, which contains several hints about the reason why the trans-
action aborted. For example, an abort due to capacity restrictions is persistent. If the
abort is persistent, we fallback to software by acquiring the global lock and execute the
transaction’s application code (lines 11, 15–18). Otherwise, we decrement the number
of remaining attempts and control flow jumps back to txn_start.
Speculative HTM transaction. Like in our STM implementation, when a trans-
action starts for the first time it requests a sequence number from the se-
quencer (Fig. 4b, line 5). After waiting until the global lock is free, we check whether
it is the transaction’s turn to commit. If so, we begin a ROT and switch to fast
mode (lines 8–9). Otherwise, we sample the sequencer number of the current fast
transaction sn (we explain why shortly), then begin a hardware transaction, and
subscribe to the global lock (lines 11–13). To commit a transaction we: (1) issue
the tsuspend instruction to suspend transactional execution (line 22), (2) wait for our
turn to commit (line 23), (3) issue the tresume instruction to resume transactional exe-
cution (line 24), and (4) issue the tcommit instruction to commit (line 25). If the commit
is successful we update the snc variable accordingly (line 26).

If the speculative transaction aborts due to persistent reasons, there is no point in
retrying the transaction until it is it’s turn to commit (line 18). Otherwise, we wait until
the concurrent fast transaction commits to retry the speculative transaction (line 20)—
recall that we sampled its sequence number sn when we started the aborted hardware
transaction (line 11). The rationale for waiting for the concurrent fast transaction to
commit is to minimize the chances of aborting the fast transaction via write-write
conflicts.
Fast HTM transaction. As previously stated, fast transactions execute as ROTs. Un-
like regular hardware transactions, ROTs do not maintain a read set so they enjoy
an increased capacity limit that can be used exclusively for writes. Transactions that
previously exceeded capacity constraints and had to fallback to software might now be
able to commit in hardware. This has the potential to increase the parallelism in the
system because falling back to software effectively “stops the world.”

Committing a fast transaction is essentially equivalent to the standard HTM trans-
action with an additional update to snc (Fig. 4c lines 14–18). If a fast transaction aborts
due to capacity restrictions it falls back to software (lines 5–6, 9–12).

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 4, Article 52, Publication date: December 2016.

Pot: Deterministic transactional execution 52:13

Benchmark Parameters

Bayes -v 32 -r 4096 -n 10 -p 40 -i 2 -e 8 -s 1
Genome -g 65536 -s 32 -n 16777216
Intruder -a 10 -l 2048 -n 8192 -s 1

Kmeans− -m 40 -n 40 -t 0.00001 -i inputs/random-n65536-d32-c16.txt
KMeans+ -m 15 -n 15 -t 0.00001 -i inputs/random-n65536-d32-c16.txt
Labyrinth -i inputs/random-x512-y512-z7-n512.txt

SSCA2 -s 20 -i 1.0 -u 1.0 -l 3 -p 3
Vacation− -n 8 -q 90 -u 98 -r 1048576 -t 4194304
Vacation+ -n 8 -q 10 -u 90 -r 1048576 -t 4194304

Yada -a 15 -i inputs/ttimeu1000000.2
STMBench7 (r) -t true -w r

STMBench7 (rw) -t true -w rw
STMBench7 (w) -t true -w w

Fig. 5: Parameters used in STAMP and STMBench7.

Note that the hardware ensures that the fast transaction’s reads do not observe the
writes of concurrent speculative transactions. Moreover, if the fast transaction reads
a memory location that has been written by a concurrent speculative transaction, the
hardware aborts the speculative transaction immediately if it is executing, or when it
issues the tresume instruction if it is suspended.

4. EXPERIMENTAL EVALUATION
All experiments were run on a 10-core IBM POWER8 with a total of 128GB RAM. We
highlight the fact that the machine has a NUMA architecture. Particularly, the mem-
ory latencies in our experiments are as follows: with 1 to 4 threads memory latencies
are uniform, while with 8 or more threads memory latencies increase up to 2×.

We evaluate Pot using the popular STAMP 0.9.10 benchmark suite [Minh et al. 2008]
and STMBench7 [Guerraoui et al. 2007], using the parameters listed in Fig. 5. STAMP
consists of 8 representative applications from different domains, e.g. online transac-
tion processing, iterative clustering algorithms, and Delaunay mesh refinement (Vaca-
tion, KMeans, and Yada, resp.) [Minh et al. 2008]. Some STAMP benchmarks, such as
Labyrinth, KMeans, and Yada, output non-deterministic results using STM. The ben-
efits of Pot in these benchmarks are that the computed Labyrinth’s solution, KMeans’
clusters, and Yada’s mesh, are always the same across executions. STMBench7 is a
more complex benchmark suggestive of CAD, CAM or CASE software [Guerraoui et al.
2007]. Results are the average of five runs. The GCC version is Red Hat 5.1.1-4.

4.1. Software Transactional Memory
In this section we evaluate our Pot STM prototype. We seek to answer the following
questions:
Are fast transactions effective? (§4.1.1.) Yes, they successfully reduce concurrency
control overheads and execute faster than regular transactions. Our experiments show
that fast transactions already execute faster than regular transactions even when they
perform as little as 1 read and 1 write access, despite the addition work performed
regarding the sequencer and switching modes (Fig. 6).
Does Pot ensure determinism efficiently? (§4.1.2.) We argue that it does. Our ex-
periments show that Pot ensures deterministic execution across all of STAMP’s bench-
marks with an average slowdown over nondeterministic execution of less than 2× (ge-
ometric mean of Fig. 7), and it is ≈ 5× faster on average than the nondeterministic
baseline in STMBench7 (geometric mean of Fig. 8).

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 4, Article 52, Publication date: December 2016.

52:14 T. M. Vale et al.

0 1 2 4 8 16 32 64
0
1
2
3
4
5
6
7
8
9

10
11

Number of accesses

×
fa

st
er

th
an

ST
M

tr
an

sa
ct

io
n 0% reads

50% reads
100% reads

Fig. 6: Speedup achieved by a Pot fast transaction over the baseline STM transaction.

Does Pot improve upon the state of the art? (§4.1.2.) Yes, Pot successfully lowers
the overheads of ensuring determinism when compared with DeSTM [Ravichandran
et al. 2014]. Our experiments show that, when compared to DeSTM, Pot is up to ≈ 3×
faster than DeSTM on average across the STAMP benchmarks (geometric mean of
Fig. 7) and up to ≈ 9× faster on average in STMBench7 (geometric mean of Fig. 8),
and scales better with the number of threads (Fig. 11 and 12).

4.1.1. Effectiveness of fast transactions. The fast transaction’s objective is to reduce con-
currency control overheads in order to mitigate the potential loss of parallelism intro-
duced by ordered commits. To measure how effective is the fast execution mode we
executed a microbenchmark that consists of a simple key-value data structure imple-
mented with an array of counters. We use a single thread, and vary the number of
accesses performed by transactions, and the accesses’ read/write ratio.

Fig. 6 shows how much faster the Pot fast transaction protocol is than the base-
line STM transaction. Transactions with 0 accesses consist of txn_begin immediately
followed by txn_commit. This allows us to measure the overhead imposed by the ad-
ditional work performed by the sequencer, ordered commits, and transaction modes,
which is negligible. By increasing the number of accesses we observe that, as ex-
pected, fast transactions perform increasingly better than the baseline. We also ob-
serve that write operations contribute more to the achieved speedup. This is due to
the fact that in the baseline STM write operations impose overhead on reads because
reads must query the write set for possible buffered values. Write operations also im-
pose overhead on the commit operation due to the need to lock the write set, perform
the write back, and unlock the write set. Fast transactions bypass all these sources
of overhead. However, fast transactions do not achieve observable gains when trans-
actions are read-only. This is because read-only transactions in the baseline STM do
not need to validate the read set at commit time—they are serialized at begin time.
Overall, fast transactions are successful in minimizing concurrency control overheads,
even for transactions that perform as little as 1 read and 1 write.

4.1.2. Comparison with the state of the art. In this section we evaluate deterministic ex-
ecution using Pot in the popular STAMP 0.9.10 benchmark suite [Minh et al. 2008],
and STMBench7 [Guerraoui et al. 2007]. We also compare Pot against DeSTM, a state
of the art system in deterministic execution of STM programs. To perform an apples-
to-apples comparison, we implemented DeSTM in our own prototype.3 Both Pot and
DeSTM are based on the same baseline STM protocol and use the exact same se-

3DeSTM is not publicly available. We asked the authors for the source code via e-mail but got
no response.

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 4, Article 52, Publication date: December 2016.

Pot: Deterministic transactional execution 52:15

quencer. See §5 for a comparison of Pot with DeSTM. We also implemented a deter-
ministic and non-speculative solution based on a global lock that transactions acquire
according to the order defined by the sequencer, i.e. transactions acquire a global lock
at txn_begin and release it at txn_commit (PoGL, as in Preordered Global Lock). The
rationale is that PoGL is a “trivial” implementation of PCC without any speculation.
We show results for DeSTM, PoGL, ordered commits only (Pot−), ordered commits
and transaction modes (Pot∗), and ordered commits, transaction modes, and live pro-
motion (Pot).
Performance. Fig. 7 quantifies the cost of deterministic multithreading when using
DeSTM, PoGL, and Pot, on STAMP. With it we seek to answer the following ques-
tion: “How much slower is the execution with x threads if we want determinism?”
The Figure reports the execution time normalized to the baseline nondeterministic
STM execution (y axis) of every benchmark of the STAMP suite, when executed with
DeSTM, PoGL, Pot− (ordered commits), Pot∗ (ordered commits and transaction modes)
and Pot (ordered commits, transaction modes, and live promotion) using from 2 to 16
threads (x axis). In these plots lower is better, and values below 1 mean that the deter-
ministic execution was faster than standard nondeterministic execution. Four obser-
vations stand out: (a) the cost of ensuring determinism increases with the number of
threads, (b) Pot outperforms DeSTM in all benchmarks, (c) Pot is at most ≈ 3× slower
than the nondeterministic baseline, while DeSTM suffers from a slowdown of up
to ≈ 11×, (d) Pot is even always faster than the baseline STM execution on Genome,
and (e) although PoGL works well in some workloads, Pot achieves the best of both
worlds: Pot is comparable to PoGL on the workloads PoGL works well, and consider-
ably outperforms PoGL on the remaining workloads (e.g. ≈ 2.5× on Intruder, ≈ 3× on
Labyrinth and Vacation+, and ≈ 5× on Vacation−).

The fact that the cost of ensuring determinism increases with the number of threads
is unsurprising; the probability of a transaction t attempting to commit before its turn
increases with the number of threads, particularly if there are transactions ordered
before t that take longer than t. Pot’s ordered commits and transaction modes mini-
mize these situations to increase the probability of transactions not having to wait for
their turn to commit. Fig. 9 supports this claim. It shows, for each benchmark/thread
combination, how much time DeSTM transactions “waste” to enforce determinism, on
average, when compared to Pot. We can observe that in general DeSTM transactions
spend more time waiting for their turn to commit. Fig. 10 shows two example scenarios
that highlight the differences between DeSTM and Pot. In DeSTM time is divided into
rounds, and in each round each thread executes one transaction. A transaction can-
not start if some transaction from the previous round has not finished yet (Fig. 10a),
and cannot commit, even on its turn, if some transaction from the same round has not
started yet (Fig. 10b). In contrast, Pot realizes that rounds are not necessary to respect
a predefined serial order, so transactions never wait to start, nor to commit on their
turn.

Pot also accelerates the execution of the next transaction to commit according to
the serial order. From Fig. 6 we deduce that the benefits of the fast mode should be
more apparent in benchmarks with bigger transactions with higher write-to-read ra-
tio, and/or higher contention. Fast transactions (Pot∗) further improve performance
over ordered commits in all benchmarks (Fig. 7). However, the overhead of our imple-
mentation of live promotion (Pot) only pays off in Genome, Vacation+, and Yada.

We also experimented with STMBench7. Fig. 8 shows the throughput of DeSTM,
PoGL, Pot−, Pot∗, and Pot, normalized to the throughput of the baseline STM. Be-
cause STMBench7 features a more diverse set of transaction profiles, with more com-
plex read-write transactions, live promotion is very effective at boosting Pot’s through-

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 4, Article 52, Publication date: December 2016.

52:16 T. M. Vale et al.

2 4 8 16
0
2
4
6
8

10
12

2
.0

1

2
.3

0

2
.1

7

2
.3

2

1
.1

0

1
.6

9

1
.2

1

1
.7

4

1
.2

3

1
.9

5

1
.5

8

2
.3

0

1
.0

8

1
.5

5

1
.4

6

2
.0

1

1
.2

3

1
.8

1

1
.5

4

2
.2

5

ex
ec

ut
io

n

Bayes

DeSTM PoGL

2 4 8 16

1
.2

6

1
.0

3

1
.1

9

1
.7

7

0
.5

4

0
.6

6

0
.8

1

1
.1

1

0
.6

3

0
.5

3

0
.6

1

0
.8

2

0
.5

2

0
.4

8

0
.5

3

0
.5

8

0
.5

0

0
.4

2

0
.4

8

0
.5

8

Genome

Pot− Pot∗ Pot

2 4 8 16
0
2
4
6
8

10
12

1
.9

6 3
.5

9 5
.8

3

1
0
.6

6

0
.8

5

1
.3

4 3
.5

2

4
.5

7

1
.4

3

1
.9

1

2
.1

9

2
.1

6

1
.0

3

1
.3

2

2
.0

5

1
.8

1

1
.1

6

1
.5

6

1
.8

6

1
.8

2

to
ST

M

Intruder

2 4 8 16

1
.3

1

1
.8

3

3
.0

5

8
.9

6

0
.7

5

1
.2

7

1
.6

9

2
.9

8

1
.0

5

1
.2

9

1
.3

8 2
.8

6

0
.8

3

1
.1

6

1
.0

9

2
.0

7

0
.8

5

1
.1

9

1
.4

3

2
.2

8

KMeans−

2 4 8 16
0
2
4
6
8

10
12

1
.4

9

1
.7

7 3
.6

4

4
.6

5

0
.6

8

1
.1

8

1
.5

7

1
.8

7

0
.9

3

1
.1

6

1
.9

5

2
.8

1

0
.8

1

0
.9

5

1
.1

8

1
.7

1

0
.7

2

1
.0

7

1
.5

4

1
.9

6

no
rm

al
iz

ed

KMeans+

2 4 8 16

1
.9

2 3
.4

1 5
.7

4 8
.2

4

1
.6

7

3
.0

3 5
.0

4 7
.2

1

1
.1

2

1
.2

9

1
.6

0

2
.6

5

0
.9

7

1
.0

6

1
.2

9

2
.2

7

1
.1

2

1
.3

2

1
.7

2

2
.7

0

Labyrinth

2 4 8 16
0
2
4
6
8

10
12

1
.5

4

2
.1

5

2
.6

9

3
.1

9

1
.0

3

1
.3

4

1
.8

6

2
.3

4

0
.9

5

1
.4

2

2
.0

0

2
.3

8

0
.8

6

1
.1

5

1
.8

4

2
.2

9

0
.9

5

1
.3

9

1
.9

8

2
.3

9ti
m

e

SSCA2

2 4 8 16

1
.2

4

1
.5

3

1
.9

2

2
.8

4

0
.8

6

1
.6

6 4
.0

7 6
.3

1

1
.0

6

1
.1

8

1
.2

7

1
.4

4

0
.8

7

0
.9

4

1
.2

2

1
.2

4

0
.8

6

0
.9

9

1
.2

3

1
.3

9

Vacation−

2 4 8 16
0
2
4
6
8

10
12

1
.3

9

1
.9

3

2
.3

8 3
.9

2

0
.7

0

1
.2

0

2
.2

8

3
.0

8

1
.2

1

1
.6

0

1
.8

6

2
.1

8

1
.0

3

1
.3

4

1
.7

2

1
.9

3

0
.7

1

0
.8

4

0
.9

3

1
.0

4

Threads

E
xe

cu
ti

on

Vacation+

2 4 8 16

1
.6

8

2
.9

2 5
.3

0

1
1
.1

3

0
.6

4

1
.1

0

2
.1

8

3
.3

2

1
.4

1

1
.9

7

2
.7

5

3
.3

5

1
.2

4

1
.6

7

2
.4

3

2
.6

3

0
.7

5

1
.1

3

1
.7

0

2
.1

6

Threads

Yada

Fig. 7: How much slower is the execution of each STAMP benchmark with
x threads if we want determinism? The y axis measures the execution time using
DeSTM, PoGL (preordered global lock), Pot− (ordered commits), Pot∗ (ordered commits
and transaction modes), and Pot (ordered commits, transaction modes, and live promo-
tion), normalized to the nondeterministic execution using the baseline STM (lower is
better). − and + refer to the relative levels of contention in the configuration.

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 4, Article 52, Publication date: December 2016.

Pot: Deterministic transactional execution 52:17

0

4

8

12

16

20

0
.4

6

1
.1

4

1
.2

0

0
.8

6

1
.5

8

3
.8

4

3
.0

8

3
.9

2

0
.4

5

1
.1

8

1
.1

5

1
.0

0

0
.5

9

1
.2

8

1
.7

1

1
.6

2

1
.4

6

3
.6

9

3
.1

1

4
.2

8

to
ST

M
ex

ec
ut

io
n

Read-dominated

DeSTM PoGL

1
.0

0

1
.2

0

0
.9

9

0
.4

4

9
.3

2

8
.3

8

7
.6

4

4
.2

1

1
.7

4

1
.2

0

0
.8

0

0
.6

0

1
.5

9

1
.1

5

1
.6

8

1
.0

3

8
.3

6

6
.6

6

6
.6

5

4
.2

2

Read-write

Pot− Pot∗ Pot

2 4 8 16
0

4

8

12

16

20

1
.1

8

1
.0

0

0
.8

0

0
.3

9

19.81

14.92

9.27

6.92

1
.6

1

1
.1

1

0
.8

1

0
.4

83
.2

3

2
.2

1

1
.3

4

1
.1

3

17.77

11.74

7.41
6.21

Threads

T
hr

ou
gh

pu
t

no
rm

al
iz

ed Write-dominated

Fig. 8: How much faster is the execution of STMBench7 with x threads if we
want determinism? The y axis measures the throughput using DeSTM, PoGL (pre-
ordered global lock), Pot− (ordered commits), Pot∗ (ordered commits and transaction
modes), and Pot (ordered commits, transaction modes, and live promotion), normalized
to the nondeterministic execution using the baseline STM (higher is better). The titles
indicate the workload type.

Benchmark Threads

2 4 8 16

Bayes 1.88× 1.03× 0.95× 0.68×
Genome 3.24× 3.99× 3.92× 3.24×
Intruder 2.92× 3.11× 2.19× 1.74×

Kmeans− 4.16× 2.54× 2.22× 1.68×
KMeans+ 3.62× 2.76× 1.97× 1.16×
Labyrinth 6.61× 5.31× 2.67× 0.77×

SSCA2 4.29× 1.62× 1.36× 1.34×
Vacation− 5.52× 4.01× 3.51× 3.60×
Vacation+ 5.91× 4.93× 4.41× 5.29×

Yada 3.00× 3.26× 2.23× 1.69×
STMBench7 (r) 2.90× 3.53× 2.34× 4.73×

STMBench7 (rw) 8.02× 5.96× 7.16× 7.82×
STMBench7 (w) 15.10× 11.77× 9.17× 11.31×

Fig. 9: Time that DeSTM transactions spend waiting to enforce determinism compared
to Pot, in STAMP. A value of 2× means that, on average, DeSTM transactions spend 2×
more time waiting for their turn (hence higher is better for Pot).

put: in fact, Pot is always faster than the nondeterministic baseline, usually by more
than 3×.

To conclude, in our experiments Pot is a good general solution because it achieves
the best of both worlds: when speculation is effective Pot provides superior per-
formance, and when speculation is not effective Pot’s performance is very close to
PoGL’s (Figs. 7 and 8). Pot’s excellent results compared to DeSTM’s are explained by
both the speedups that fast transaction can achieve, as observed in Fig. 6, and the
decrease of the time transactions spend waiting for their turn, as we observe in Fig. 9.

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 4, Article 52, Publication date: December 2016.

52:18 T. M. Vale et al.

DeSTM Pot

1
1

2

(a) DeSTM waits to start.

DeSTM Pot

1

2

2

(b) DeSTM waits to commit.

Thread execution
Speculative transaction

Fast transaction
Signal next

Waiting

N DeSTM round

Fig. 10: Examples of the difference between DeSTM and Pot. In DeSTM time is divided
into rounds, and in each round each thread executes one transaction. A transaction
cannot start if some transaction from the previous round has not finished yet (a), and
cannot commit, even on its turn, if some transaction from the same round has not
started yet (b). In contrast, Pot realizes that rounds are not necessary to respect a
predefined serial order, so transactions never wait to start, nor to commit on their
turn. Pot also accelerates the execution of the next transaction to commit according to
the serial order.

Pot marks a significant advance over the state of the art in performance, and provides
promising evidence that using both STM and determinism to enable multithreaded
replicas for fault tolerance, and/or to ease multithreaded programming, may be prac-
tical.
Scalability. We further evaluate Pot’s scalability compared to a singlethread execu-
tion using the baseline STM on STMBench7 and all of the STAMP benchmarks. For
comparison we also show results for DeSTM and the baseline STM itself. The base-
line’s behavior serves as a guide for what to expect from Pot and DeSTM’s implemen-
tation: we don’t expect them to scale if the baseline does not scale. However, ideally
we should expect the Pot and DeSTM implementation to scale, even if shyly, despite
the overheads required to ensure determinism, particularly the need to wait to enforce
the deterministic commit order. Figs. 11 and 12 show the results for STAMP and STM-
Bench7, respectively. We observe that DeSTM fails to scale, whereas Pot is able to scale
up to some point, notably in Genome, Intruder and Vacation. Pot shows better results
than the baseline on STMBench7 because Pot inherently provides stronger progress
guarantees to the more complex transactions in the benchmark: while they struggle to
commit in the baseline STM, in Pot they eventually do when it is their turn, and even
have their execution sped up by the fast mode.

As threads increase it becomes increasingly challenging to mask the overhead re-
quired to ensure determinism, but nonetheless Pot manages to keep up with the base-
line up to a point. As part of future work we plan to address this issue by taking ad-
vantage of commutativity: if two successive transactions in the predefined serial order
commute they can both execute simultaneously as fast transactions. The knowledge of
whether two transactions commute can either be fed by the programmer via some sort
of annotations, or inferred via analysis.

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 4, Article 52, Publication date: December 2016.

Pot: Deterministic transactional execution 52:19

2 4 8 16
0
2
4
6
8

10
12

1
.4

6

2
.6

9

1
.8

1

1
.9

8

0
.7

2

1
.1

6

0
.8

3

0
.8

5

1
.2

0

1
.5

1

1
.1

3

0
.9

0

ST
M

ex
ec

ut
io

n

Bayes

STM

2 4 8 16

1
.2

5

1
.9

6

2
.9

8

3
.7

2

0
.9

8

1
.8

9

2
.5

0

2
.0

9

2
.4

9 4
.5

9 6
.2

1

6
.3

1

Genome

DeSTM

2 4 8 16

1
.4

1

2
.6

0 4
.5

4

4
.9

9

0
.7

2

0
.7

2

0
.7

7

0
.4

6

1
.2

1

1
.6

5

2
.4

3

2
.7

3

Intruder

Pot

2 4 8 16

1
.8

5

3
.0

2 4
.8

9 6
.8

6

1
.7

5

2
.3

3

3
.5

4

2
.3

9

2
.1

7

2
.5

3

3
.4

2

2
.9

9

KMeans−

2 4 8 16
0
2
4
6
8

10
12

1
.9

7

3
.2

6

3
.8

2

2
.8

1

1
.3

1

1
.8

4

1
.0

5

0
.6

02
.7

2

3
.0

2

2
.4

7

1
.4

3

si
ng

le
th

re
ad

ed

KMeans+

2 4 8 16

1
.9

7 3
.5

6 5
.8

4

7
.0

7

1
.0

2

1
.0

4

1
.0

1

0
.8

5

1
.7

5

2
.6

8

3
.3

8

2
.6

1

Labyrinth

2 4 8 16

1
.0

8

1
.4

5

1
.5

7

1
.8

1

0
.7

0

0
.6

7

0
.5

8

0
.5

6

1
.1

4

1
.0

3

0
.7

9

0
.7

5

SSCA2

2 4 8 16

1
.5

6

3
.0

1 5
.5

7

8
.4

4

1
.2

5

1
.9

6

2
.8

8

2
.9

6

1
.8

1

3
.0

2 4
.5

1 6
.0

3

Vacation−

2 4 8 16
0
2
4
6
8

10
12

1
.6

2

2
.9

9 4
.5

8 6
.1

0

1
.1

6

1
.5

4

1
.9

2

1
.5

5

2
.2

8

3
.5

4

4
.9

0

5
.8

4

Threads

×
fa

st
er

th
an

Vacation+

2 4 8 16

1
.4

9

2
.5

3 4
.2

6

5
.5

2

0
.8

8

0
.8

6

0
.8

0

0
.4

91
.9

8

2
.2

3

2
.4

9

2
.5

5

Threads

Yada

Fig. 11: Scalability of deterministic execution using DeSTM and Pot on STAMP. The y
axis measures the speedup over a singlethread baseline STM execution. A value of 1
means the execution time was the same as the baseline, a value greater than 1 means
the execution time was faster (better), and a value less than 1 means the execution
time was slower (worse).

2 4 8 16
0

4

8

12

16

20

1
.4

3

0
.7

3

0
.9

1

0
.6

5

0
.6

6

0
.8

4

1
.1

0

0
.5

7

2
.1

1

2
.7

1

2
.8

4

2
.8

2

Threads

×
fa

st
er

th
an

si
ng

le
th

re
ad

ed
ST

M
ex

ec
ut

io
n

Read-dominated

STM

2 4 8 16

0
.9

3

0
.9

6

1
.0

5

1
.4

7

0
.9

3

1
.1

6

1
.0

4

0
.6

6

7
.7

8

6
.4

5

7
.0

3

6
.2

2

Threads

Read-write

DeSTM Pot

2 4 8 16

1
.1

0

1
.2

7

1
.5

2

2
.2

7

1
.3

0

1
.2

7

1
.2

2

0
.8

9

19.55

14.92

11.31

14.12

Threads

Write-dominated

Fig. 12: Scalability of deterministic execution using DeSTM and Pot on STMBench7.
The y axis measures the speedup over a singlethreaded baseline STM execution. A
value of 1 means the throughput was the same as the baseline, a value greater than 1
means the throughput was greater (better), and a value less than 1 means the through-
put was lower (worse). The titles indicate the workload type.

4.2. Hardware Transactional Memory
We also evaluate our Pot HTM implementation using the STAMP benchmark suite. We
are interested in answering the following questions: (1) how effective are fast transac-
tions, and (2) what is the cost that Pot incurs in to ensure deterministic execution.

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 4, Article 52, Publication date: December 2016.

52:20 T. M. Vale et al.

B
ay

es

G
en

om
e

In
tr

ud
er

K
M

ea
ns
−

K
M

ea
ns

+

L
ab

yr
in

th

SS
C

A
2

Va
ca

ti
on
−

Va
ca

ti
on

+

Ya
da

0

20

40

60

80

100

4
7
.0

0

4
7
.4

0

3
2
.4

0

0
.0

0

0
.0

0

4
9
.9

0

0
.0

0

9
9
.3

0

9
8
.7

6

1
7
.5

1

4
.6

0

0
.0

0

0
.0

6

0
.0

0

0
.0

0

4
9
.8

5

0
.0

0

0
.0

1

3
.1

1 1
7
.3

9

Pe
rs

is
te

nt
ab

or
ts

(%
of

tr
an

sa
ct

io
ns

) HTM Pot

Fig. 13: Percentage of transactions that experience persistent aborts using baseline
HTM transactions and Pot fast HTM transactions on the STAMP benchmarks (lower
is better). − and + refer to the relative levels of contention in the configuration.

Are fast transactions effective? (§4.2.1.) Yes, Pot fast transactions enjoy increased
capacity limits when compared to regular transactions. Our experiments show that
for 4 of the STAMP benchmarks, Pot fast transactions greatly reduce the need to fall
back to software (Fig. 13).
What is the cost that Pot incurs in to ensure determinism? (§4.2.2.) Our exper-
iments show that Pot ensures deterministic execution across all of STAMP’s bench-
marks with moderate overhead (Fig. 14.)

4.2.1. Effectiveness of fast transactions. While our Pot STM fast transaction is able to
reduce concurrency control overheads, implementing a HTM fast transaction that ef-
fectively reduces concurrency control overheads would require hardware support that
is currently unavailable in existing processors. However, by exploiting IBM’s Rollback-
only Transactions (ROTs), Pot HTM fast transactions enjoy increased capacity lim-
its, which increases the chance of committing more transactions entirely in hardware
without falling back to the global lock.

We executed each benchmark with regular HTM and Pot using a single thread. Since
there is only one thread executing there are no aborts due to concurrency, however
transactions may still abort for spuriously; thus we only count aborts that the hard-
ware hints to be persistent—we collect this information from the TEXASR register as
we discuss in §3.2. Fig. 13 shows that the transactions that the baseline HTM can-
not accommodate in both Labyrinth and Yada are also not accommodated by Pot’s fast
transaction. The transactions of KMeans and SSCA2, on the other hand, can all exe-
cute without problem. The rest of the benchmarks have a mix of transactions that can
and cannot execute in hardware. In these we can clearly see the benefit of Pot’s fast
transactions: for example, in Bayes around 47% of the transactions can not be accomo-
dated by the baseline HTM but this number falls to around 5% with Pot. Indeed, with
Pot the number of transactions that are not accomodated by the hardware falls down
from more than 30% to less than 5%. This means that Pot fast HTM transactions are
successful at avoiding to fall back to the global lock. Thus, fast transactions manage to
regain some of the parallelism lost to ordered commits when the baseline HTM falls
back to software.

4.2.2. Performance. Fig. 14 shows the overhead of deterministic multithreading using
Pot HTM. It has less overhead on benchmarks where the baseline often falls back to
software (Bayes, Genome, Vacation). In Genome Pot always outperforms the nondeter-
ministic execution. Vacation’s results in Fig. 14 may seem unintuitive given than the

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 4, Article 52, Publication date: December 2016.

Pot: Deterministic transactional execution 52:21

B
ay

es

G
en

om
e

In
tr

ud
er

K
M

ea
ns
−

K
M

ea
ns

+

L
ab

yr
in

th

SS
C

A
2

Va
ca

ti
on
−

Va
ca

ti
on

+

Ya
da

0

2

4

6

8

10

0
.8

1

0
.9

3

1
.9

4

1
.1

0

1
.3

9

0
.9

9

1
.3

1

1
.0

0

1
.0

3

1
.2

7

1
.0

5

0
.9

8

1
.9

2

1
.2

0

1
.7

0

0
.9

9

1
.3

6

1
.0

5

1
.0

8

1
.2

6

1
.2

0

0
.9

3

1
.9

6

2
.6

1

6
.4

6

0
.9

9 2
.4

5

1
.0

3

1
.0

7

1
.3

3

1
.3

5

0
.9

4

1
.7

6

5
.4

3

5
.1

8

0
.8

9 2
.6

4

0
.9

6

1
.0

2

1
.2

9

E
xe

c.
ti

m
e

no
rm

al
iz

ed
to

H
T

M
ex

ec
ut

io
n

2 threads 4 threads 8 threads 16 threads

Fig. 14: Deterministic execution of STAMP using Pot. The y axis measures the execu-
tion time normalized to the nondeterministic execution using the baseline HTM (lower
is better). − and + refer to the relative levels of contention in the configuration.

baseline HTM practically always falls back to the global lock while Pot mostly executes
without resorting the global lock (Fig. 13). However, note that since all transactions
executing in speculative mode exceed the hardware capacity, Pot is also executing one
transaction at a time, albeit in fast mode instead of needing to fall back to the global
lock.

Arguably the more interesting benchmarks are the ones where the baseline performs
well, i.e. falls back less to the global lock (Intruder, KMeans, SSCA2, and Yada from
Fig. 13). In Intruder and Yada, in Fig. 14, Pot achieves modest overheads of up to 2×.
KMeans and SSCA2 are optimal for the baseline HTM, featuring small transactions
with few accesses and conflicts. These characteristics make it difficult to mask the
overheads of ensuring determinism. KMeans also features an abundant use of thread
synchronization via barriers which amplifies the overhead caused by the sequencer
while assigning sequence numbers deterministically. Also note that since fast transac-
tions are not sped up in HTM, there is a noticeable drop in performance from 4 to 8
threads and even more from 8 to 16 threads due to the increased memory latencies of
the NUMA architecture and hardware oversubscribing.

To the best of our knowledge, Pot advances the state of the art by enabling deter-
ministic execution of HTM-based multithreaded programs for the first time. Overall,
Pot achieves deterministic execution with lower overhead at lower thread counts, but
increased memory latencies lead to a drop in performance relatively to the nonde-
terministic baseline. Efficiently achieving deterministic execution in the presence of
non-uniform memory accesses represents an interesting future research avenue. The
results achieved by Pot STM fast transactions suggest that hardware support for fast
transactions that do not abort due to conflicts with other transactions may be worth-
while.

5. RELATED WORK
Preordered transactions. The idea of preordering transactions has also been used in
the database community with the objective of reducing the costs of distributed trans-
actions [Thomson et al. 2012]. In our work we advocate its use to achieve deterministic
multithreading of TM-based programs. The aforementioned works also describe a con-
currency control protocol to ensure that the predefined order is respect. However, that
protocol could not be used in the context of our work, particularly in HTM, because
it is tailored for transactions whose read/write sets can be determined a priori and is

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 4, Article 52, Publication date: December 2016.

52:22 T. M. Vale et al.

based on Two-phase Locking. Ours is based on OCC and more general because it fully
supports both transactions with static and dynamic read/write sets.
Deterministic multithreading. Many deterministic multithreading systems for
lock-based programs have been proposed [Bergan et al. 2010; Liu et al. 2011; Olszewski
et al. 2009; Lu et al. 2014; Cui et al. 2013]. If transactions are implemented with locks,
deterministic transactions could be implemented using such systems. However this ap-
proach cannot be applied to off-the-shelf HTM, because the concurrency control is im-
plemented in the hardware, and fails to exploit the semantics of transactions to reduce
the overhead of ensuring determinism, because determinism is enforced with locks,
which are at a level of abstraction lower than transactions. Both DeTrans [Smiljkovic
et al. 2014] and DeSTM [Ravichandran et al. 2014] adapt the double barrier technique
used by many deterministic lock-based systems to STM. DeTrans provides strong de-
terminism [Olszewski et al. 2009] while DeSTM, like Pot, provides weak determin-
ism [Olszewski et al. 2009]. One of the key differences between DeSTM and Pot is that
in Pot the sequencer establishes a deterministic transaction serialization order that
is enforced, i.e., the final outcome is as if transactions executed in the serial order de-
fined by the sequencer. DeSTM, on the other hand, uses a token-passing scheme that
defines a deterministic order in which threads attempt to commit transactions. Thus,
the final outcome is always equivalent to the same transaction serialization order, al-
though that order is unknown beforehand. As a consequence of this design, DeSTM
orders both aborts and commits and requires conflicts to be deterministic. Pot only
orders commits, and works whether conflicts are deterministic or not. Pot’s design al-
lows it to achieve better performance than DeSTM (which is important when replicat-
ing applications for fault tolerance), and from the application developers point of view,
they are equally helpful with concurrency bugs such as atomicity and order violations.
Furthermore, Pot’s sequencer enables more uses cases, e.g. record-replay. However, if
concurrency bugs lie in the STM implementation then DeSTM is better due to its re-
quirement of deterministic conflicts. Grace [Berger et al. 2009] ensures deterministic
execution of fork-join programs by using a custom STM that uses a technique similar
to ordered commits. DMP-TM [Devietti et al. 2009] also ensures determinism using
hardware transactions and ordered commits. Pot works with both STM and HTM, is
not limited to fork-join-style parallelism, and takes advantage of the deterministic
order to improve efficiency via fast transactions. DMP-TMFwd [Devietti et al. 2009]
proposes to speculatively forward values written from transactions to their successors
in the order. However current hardware does not support this functionality, and it is
unclear how this can be done without violating opacity.
Parallelizing sequential code. FastPath [Spear et al. 2009], IPOT [von Praun et al.
2007] and TEPO [Gonzalez-Mesa et al. 2014] present a programming model to par-
allelize sequential code, e.g. loops, using transactions. Like DMP-TMFwd, they also
order commits and propose to speculatively forward values. IPOT relies on unavail-
able hardware support to do so, TEPO does not implement it, and neither discusses
how to do it while perserving opacity. Pot ensures deterministic execution of multi-
threaded TM programs, exploits the deterministic order using fast transactions, and
preserves opacity.
Transaction modes. Executing transactions with the guarantee that they do not
abort has been used to support I/O inside transactions [Spear et al. 2008; Welc et al.
2008], and to improve the performance of STMs at low thread counts [Wamhoff et al.
2013]. Pot fast transactions are similar in spirit to these works, however, their intent is
to minimize the overhead of ensuring determinism. Unlike the aforementioned works,
multiple fast transactions can safely execute in parallel by exploiting the existence of a
predefined serialization order, e.g. a string of successive transactions that do not have
read-write nor write-write conflicts between them can execute simultaneously as fast

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 4, Article 52, Publication date: December 2016.

Pot: Deterministic transactional execution 52:23

transactions. PhTM [Lev et al. 2007] can execute transactions in different modes but
only one mode is active at a time, while Pot executes different transactions in different
modes simultaneously and transactions can switch modes at runtime.

6. CONCLUSIONS
We presented Pot, a system that uses the concept of preordered transactions as a prin-
cipled approach to achieve deterministic multithreaded execution of transactions. At
Pot’s core is a novel concurrency control protocol that efficiently enforces a predefined
transaction serialization order using two techniques: ordered commit and transaction
modes. Pot advances the state of the art by: (1) to the best of our knowledge, enabling
deterministic execution of off-the-shelf HTM-based multithreaded programs, and (2)
clearly outperforming the state of the art in STM-based deterministic execution while
simultaneously achieving determinism with low overhead, providing promising evi-
dence that using both STM and determinism to enable multithreaded replicas for fault
tolerance, and/or ease multithreaded programming, may be practical.

ACKNOWLEDGMENTS

We are grateful to the anonymous reviewers for their helpful comments and suggestions, and to Koen De
Bosschere for acting as a proxy for additional discussion with the reviewers. We also thank Tomas Vojnar,
Daniel Horák, Jakub Cajka, Jaromir Capik, and the folks at Red Hat in Brno, Czech Republic, for providing
us access to the infrastructure used in the evaluation. This research is supported by SFRH/BD/84497/2012
and PEst/UID/CEC/04516/2013.

REFERENCES
Tom Bergan, Owen Anderson, Joseph Devietti, Luis Ceze, and Dan Grossman. 2010. CoreDet: A

compiler and runtime system for deterministic multithreaded execution. In International Con-
ference on Architectural Support for Programming Languages and Operating Systems (ASPLOS).
DOI:http://dx.doi.org/10.1145/1736020.1736029

Emery D. Berger, Ting Yang, Tongping Liu, and Gene Novark. 2009. Grace: Safe Multithreaded Program-
ming for C/C++. In ACM SIGPLAN International Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA). DOI:http://dx.doi.org/10.1145/1640089.1640096

Philip Bernstein, Vassos Hadzilacos, and Nathan Goodman. 1987. Concurrency control and recovery in
database systems. Addison-Wesley.

C++ Committee SG5. 2015. Technical Specification for C++ Extensions for Transactional Memory. open-
std.org/jtc1/sc22/wg21/docs/papers/2015/n4514.pdf. (2015).

Harold Cain, Maged Michael, Brad Frey, Cathy May, Derek Williams, and Hung Le. 2013. Robust archi-
tectural support for transactional memory in the POWER architecture. In International Symposium on
Computer Architecture (ISCA). DOI:http://dx.doi.org/10.1145/2485922.2485942

Heming Cui, Jiri Simsa, Y. Lin, Hao Li, Ben Blum, Xinan Xu, Junfeng Yang, Garth Gibson, and Randal
Bryant. 2013. Parrot: A practical runtime for deterministic, stable, and reliable threads. In ACM Sym-
posium on Operating Systems Principles (SOSP). DOI:http://dx.doi.org/10.1145/2517349.2522735

Luke Dalessandro, Michael F. Spear, and Michael L. Scott. 2010. NOrec: Streamlining STM by Abolishing
Ownership Records. In ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP). DOI:http://dx.doi.org/10.1145/1693453.1693464

Joseph Devietti, Brandon Lucia, Luis Ceze, and Mark Oskin. 2009. DMP: Deterministic Shared Memory
Multiprocessing. In International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS). DOI:http://dx.doi.org/10.1145/1508244.1508255

Dave Dice, Ori Shalev, and Nir Shavit. 2006. Transactional locking II. In International Symposium on Dis-
tributed Computing (DISC). DOI:http://dx.doi.org/10.1007/11864219_14

Free Software Foundation. 2014. Transactional memory in GCC. gcc.gnu.org/wiki/TransactionalMemory.
(2014).

M. A. Gonzalez-Mesa, Eladio Gutierrez, Emilio L. Zapata, and Oscar Plata. 2014. Effective Transactional
Memory Execution Management for Improved Concurrency. ACM Transactions on Architecture and
Code Optimization (TACO) 11, 3 (2014). DOI:http://dx.doi.org/10.1145/2633048

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 4, Article 52, Publication date: December 2016.

52:24 T. M. Vale et al.

Rachid Guerraoui and Michal Kapalka. 2008. On the Correctness of Transactional Memory. In
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP).
DOI:http://dx.doi.org/10.1145/1345206.1345233

Rachid Guerraoui, Michal Kapalka, and Jan Vitek. 2007. STMBench7: A Benchmark for Soft-
ware Transactional Memory. In ACM European Conference on Computer Systems (EuroSys).
DOI:http://dx.doi.org/10.1145/1272996.1273029

Maurice Herlihy and J. Eliot B. Moss. 1993. Transactional memory: Architectural support for
lock-free data structures. In International Symposium on Computer Architecture (ISCA).
DOI:http://dx.doi.org/10.1145/165123.165164

H. Kung and John Robinson. 1981. On optimistic methods for concurrency control. ACM Transactions on
Database Systems (TODS) 6, 2 (1981).

Yossi Lev, Mark Moir, and Dan Nussbaum. 2007. PhTM: Phased transactional memory. In ACM SIGPLAN
Workshop on Transactional Computing (TRANSACT).

Tongping Liu, Charlie Curtsinger, and Emery Berger. 2011. DThreads: Efficient determin-
istic multithreading. In ACM Symposium on Operating Systems Principles (SOSP).
DOI:http://dx.doi.org/10.1145/2043556.2043587

Kai Lu, Xu Zhou, Tom Bergan, and Xiaoping Wang. 2014. Efficient Deterministic Multithreading Without
Global Barriers. In ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP). DOI:http://dx.doi.org/10.1145/2555243.2555252

Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. 2008. Learning from Mistakes: A Com-
prehensive Study on Real World Concurrency Bug Characteristics. In International Confer-
ence on Architectural Support for Programming Languages and Operating Systems (ASPLOS).
DOI:http://dx.doi.org/10.1145/1346281.1346323

Chí Cao Minh, JaeWoong Chung, Christos Kozyrakis, and Kunle Olukotun. 2008. STAMP: Stanford trans-
actional applications for multi-processing. In IEEE International Symposium on Workload Characteri-
zation (IISWC). DOI:http://dx.doi.org/10.1109/IISWC.2008.4636089

Marek Olszewski, Jason Ansel, and Saman Amarasinghe. 2009. Kendo: Efficient deterministic multithread-
ing in software. In International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS). DOI:http://dx.doi.org/10.1145/1508244.1508256

Kaushik Ravichandran, Ada Gavrilovska, and Santosh Pande. 2014. DeSTM: Harnessing Determinism in
STMs for Application Development. In International Conference on Parallel Architectures and Compila-
tion Techniques (PACT). DOI:http://dx.doi.org/10.1145/2628071.2628094

Fred B. Schneider. 1990. Implementing Fault-tolerant Services Using the State Machine Approach: A Tuto-
rial. ACM Computing Surveys (CSUR) 22, 4 (1990). DOI:http://dx.doi.org/10.1145/98163.98167

Nir Shavit and Dan Touitou. 1997. Software transactional memory. Distributed Computing 10, 2 (1997).
DOI:http://dx.doi.org/10.1007/s004460050028

Vesna Smiljkovic, Srdan Stipic, Christof Fetzer, Osman Ünsal, Adrián Cristal, and Mateo
Valero. 2014. DeTrans: Deterministic and Parallel Execution of Transactions. In Interna-
tional Symposium on Computer Architecture and High Performance Computing (SBAC-PAD).
DOI:http://dx.doi.org/10.1109/SBAC-PAD.2014.20

M.F. Spear, M. Silverman, L. Dalessandro, M.M. Michael, and M.L. Scott. 2008. Implementing and exploit-
ing inevitability in software transactional memory. In International Conference on Parallel Processing
(ICPP). DOI:http://dx.doi.org/10.1109/ICPP.2008.55

Michael F Spear, Kirk Kelsey, Tongxin Bai, Luke Dalessandro, Michael L Scott, Chen Ding, and Peng Wu.
2009. Fastpath speculative parallelization. In Workshop on Languages and Compilers for Parallel Com-
puting. DOI:http://dx.doi.org/10.1007/978-3-642-13374-9_23

Alexander Thomson, Thaddeus Diamond, Shu-Chun Weng, Kun Ren, Philip Shao, and Daniel Abadi. 2012.
Calvin: Fast distributed transactions for partitioned database systems. In ACM International Confer-
ence on Management of Data (SIGMOD). DOI:http://dx.doi.org/10.1145/2213836.2213838

Christoph von Praun, Luis Ceze, and Calin Caşcaval. 2007. Implicit Parallelism with Ordered Transac-
tions. In ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP).
DOI:http://dx.doi.org/10.1145/1229428.1229443

J. Wamhoff, Christof Fetzer, Pascal Felber, Etienne Rivière, and Gilles Muller. 2013. Fast-
Lane: Improving performance of software transactional memory for low thread counts. In
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP).
DOI:http://dx.doi.org/10.1145/2442516.2442528

Adam Welc, Bratin Saha, and A. Adl-Tabatabai. 2008. Irrevocable transactions and their ap-
plications. In ACM Symposium on Parallelism in Algorithms and Architectures (SPAA).
DOI:http://dx.doi.org/10.1145/1378533.1378584

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 4, Article 52, Publication date: December 2016.

Pot: Deterministic transactional execution 52:25

Richard Yoo, Christopher Hughes, Konrad Lai, and Ravi Rajwar. 2013. Performance evaluation
of Intel R© transactional synchronization extensions for high-performance computing. In Inter-
national Conference for High Performance Computing Networking, Storage, and Analysis (SC).
DOI:http://dx.doi.org/10.1145/2503210.2503232

Received May 2016; revised November 2016; accepted November 2016

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 4, Article 52, Publication date: December 2016.

